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Summary

Extracellular vesicle (EV) exchange is emerging as a novel method of 
communication at the maternal–fetal interface. The presence of the EVs 
has been demonstrated in the preimplantation embryo culture medium 
from different species, such as bovines, porcines and humans. Preimplan-
tation embryo-derived EVs have been shown to carry molecules potentially 
able to modulate the local endometrial immune system. The non-classical 
major histocompatibility complex (MHC) class I molecule human leucocyte 
antigen (HLA)-G, the immunomodulatory molecule progesterone-induced 
blocking factor and some regulatory miRNAs species are contained in 
embryo-derived EV cargo. The implanted syncytiotrophoblasts are also 
well known to secrete EVs, with microvesicles exerting a mainly proin-
flammatory effect while exosomes in general mediate local immunotoler-
ance. This review focuses on the current knowledge on the potential role 
of EVs released by the embryo in the first weeks of pregnancy on the 
maternal immune cells. Collectively, the data warrant further exploration 
of the dialogue between the mother and the embryo via EVs.

Keywords: extracellular vesicles, embryo, HLA-G, maternal–fetal interface, 
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Extracellular vesicles: characterization and roles

In the last century, the development of electron micros-
copy (TEM) allowed the discovery of spherical particles 
released by some blood cells. For a long time, these vesicles 
were thought to be artefacts resulting from cell damage, 
but some studies showed that all cells, from bacteria to 
plants and animal cells, seem to release extracellular vesi-
cles (EVs) into their environment [1].

In recent decades, the scientific community focused on 
the central role of EVs in intracellular communication 
and it is becoming increasingly evident that they have 
specific functions in signalling, waste management, coagu-
lation and inflammation. There are several populations 
of cell-derived vesicles differing in size, composition, origin 
and functions, but they are all enclosed by a membrane 
of a phospholipid bilayer sharing some features with their 
origin cells. They are usually divided into different classes, 
of which the most important are exosomes, microvesicles 
and apoptotic bodies [2].

Exosomes are the smallest (diameter 50–150 nm) and 
the most studied. They are generated by exocytosis of 
multi-vesicular bodies (MVBs), which are intracellular 
endosomal bodies made up of single outer membranes 
that gather multiple intraluminal vesicles. There are two 
different types of MVBs, one involved in the degradative 
pathway towards lysosomes and the other in the exocytosis 
or recycling pathway [3,4]. On the surface of most exosomes 
there is an evolutionarily conserved set of proteins such 
as tetraspanins CD9 or CD63, Alix, and Tsg101, but also 
specific proteins that reflect their cellular source. Recent 
studies indicate that the vesiculation process depends on 
three different cell features: the membrane lipid content, 
the transversal asymmetry and the lateral heterogeneity 
[5–7]. Exosomes have been isolated from urine, blood, 
cerebrospinal fluid, synovial fluid, bronchial lavage fluid 
and embryo spent medium [7].

Microvesicles (MVs) are heterogeneous extracellular 
vesicles (diameter 100–1000 nm). generated by the releas-
ing of outward detachment of portions of plasma 
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membrane. This typical secretion process confers to MVs 
many characteristics in common with the source cells 
[8]. Nevertheless, their biogenesis is only a partially known 
process. Flotillin-2, selectins, integrins and CD40 are con-
sidered MV markers [9].

Apoptotic bodies are the largest vesicles (diameter 
1–5 μm) generated directly by fragmentation of the plasma 
membrane of those cells undergoing the controlled process 
of apoptosis. One remarkable resemblance with the other 
EVs is to have an outer membrane particularly enriched 
in phosphatidylserine. Annexin, C3b and thrombospondin 
seem to be the only available markers [10]. Both exosomes 
and MVs may contain different biological compounds, 
such as lipids, proteins and nucleic acids (DNA, RNA, 
miRNA), depending on their targets and the tissues of 
origin. Apoptotic bodies can carry cell organelles, proteins, 
DNA fragments and histones deriving directly from the 
intracellular environment, thus playing a central role into 
cellular waste management.

In recent years, several functions have been attributed 
to EVs, as they seem to take part in the angiogenesis 
process, coagulation, cell survival and proliferation, with 
implications in tumorigenesis and infections [11–13].

In the context of the immune and inflammatory response, 
EVs appear to be involved in the communication between 
innate and adaptive immune cells. Their modulation occurs 
in order to stimulate or suppress the response depending 
on the receptors carried by the EV membrane and the 
chemical mediators in their content, such as cytokines 
and chemokines. The enhancement of the inflammatory 
signals can take place through interleukin (IL)-1 carried 
by EVs, which are typically released from monocytes or 
through platelet-activating factor (PAF, 1-o-alkyl-2-acetyl-
sn-glyc-ero-3-phosphocholine), IL-1β and caspase-1 from 
EVs detached from platelets, macrophages and dendritic 
cells (DC). Similarly, mast cells can excrete EVs with a 
proinflammatory role favouring the maturation and migra-
tion of immune cells such as DC, while EVs released by 
neutrophils are more probably associated with suppression 
signals [14]. Exosomes can even carry preformed anti-
gen–peptide/major histocompatibility complexes (pMHCs) 
directly from peripheral infected or neoplastic cells to 
antigen-presenting cells (APCs). This mechanism is known 
as MHC cross-dressing, and leads to the activation of 
APCs [15]. The proinflammatory mediators contained in 
EVs can be transported not only to other immune cells 
but also to other cell types, including fibroblasts, adipose 
tissue cells, smooth muscle cells, neurones, endothelium 
and several organ cells leading to changes in protein 
expression [16]. Conversely, exosomes can also mediate 
an immune suppression in both physiological and patho-
logical reactions. The inclusion of Fas ligand (FasL) into 
exosomes, produced by T cells or infected cells, triggers 

apoptosis of several target cells orchestrating cell death 
during immune regulations.

Recently, the emerging interest in EVs has contributed 
to the setting of different online databases, related to 
their biological characteristics such as ExoCarta, EVpedia, 
Vesiclepedia and miRandola, and even a dedicated journal 
(Journal of Extracellular Vesicles) [17,18].

Preimplantation embryo-derived EVs: 
characterization and roles at the implantation sites

The involvement of the immune system during the early 
stages of pregnancy is well described in the literature. 
Several immune cells are recruited to the placental bed 
to secure a successful pregnancy [19]. 
CD56brightCD16−natural killer (NK) cells are mainly present 
in human endometrium, and tend to increase from 20% 
of local lymphocytes in the proliferative phase to 40–50% 
in the secretory phase to 70–80% in early pregnancy 
decidua. Decidual NK cells have been shown to express 
killer immunoglobulin receptors (KIR), CD94/NKG2A and 
human inhibitory receptors immunoglobulin (Ig)-like 
transcript 2 (ILT2), which are receptors for human leu-
cocyte antigen (HLA)-C, HLA-E and HLA-G on tropho-
blast cells. The interaction of HLA-G on trophoblast and 
ILT2 expressed by uterine NK cells is thought to increase 
the secretion of inflammatory and proangiogenic factors, 
while the interaction between HLA-E on trophoblast and 
its receptor CD94/NKG2A on uterine NK cells might 
prevent the lysis of tissue cells [19]. The uterine immune 
milieu favouring pregnancy can also benefit from the 
dialogue between DC and decidual NK cells. Upon in-
vivo expansion of DC during early gestation, NK cells 
secrete increased levels of IL-10, which contribute to 
restrain potentially harmful DC immunogenic activation. 
Reciprocally, DC were shown to play an important role 
in NK cell homeostasis by enhancing proliferation and 
survival [20,21].

Uterine APCs play central roles in vascular remodelling 
in early pregnancy through the release of angiogenetic 
factors and display immunosuppressive properties. They 
express inhibitory receptors such as ILT2 and ILT4 for 
HLA-G expressed on trophoblasts which lead to the 
stimulation of anti-inflammatory cytokines and tolerance 
to the trophoblast. Moreover, they are involved in the 
differentiation of endometrial NK cells into activated NK 
cells through the production of IL-15 and can favour the 
release of interferon (IFN)-γ by NK cells via DC-specific 
intercellular adhesion molecule (ICAM)-grabbing non-
integrin (DC-SIGN)/ICAM-3. The release of IFN-γ by 
NK cells can, in turn, stimulate indoleamine dioxygenase 
(IDO) production in APCs that is toxic to T cells and 
favours regulatory T cell (Treg) cell induction. Natural Treg 
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cells are the major population of decidual Treg cells, and 
a series of molecules expressed or secreted by Treg cells 
may directly contribute to their local suppressive func-
tions, such as the up-regulation of IDO expression in 
APCs and DC. Increased levels of immunosuppressive 
CD4+HLA-G+T cells have also been found in decidua in 
healthy pregnancy [19].

As early as in the peri-implantation period, the embryo 
communicates with the endometrium releasing factors able 
to modulate these decidual immune cells [22,23]. Among 
these, soluble HLA-G, found in the embryonic secretome 
[24,25] is believed to represent a major player in the 
initiation of immunotolerance for the invading blastocyst 
into the decidual tissues. Early human embryo also pro-
duces human chorionic gonadotrophin (hCG), which 
promotes the generation of Treg cells in the uterus [26]. 
Analysis of embryo secretome also identified preimplanta-
tion factor (PIF) in spent media that exhibits a direct 
autotrophic effect, modulating maternal immune system 
and increasing endometrial receptivity [27]. Therefore, 
communication of the preimplantation embryo with the 
endometrial immune system is thought to occur via a 
mechanism of signal conveyance that has not yet been 
comprehensively understood. The involvement of the EVs 
in the intercellular communication processes makes them 
excellent candidates for the role of communication facili-
tators between the embryo and the endometrium.

The presence of the EVs has been demonstrated in the 
embryo culture medium from different species, such as 
bovines [28], porcines [29], mice [30] and humans [7]. 
The diameter of EVs found in the embryo spent media is 
quite different among these species, as shown in Table 1. 
Regardless of the species of origin, EVs released from 
preimplantation embryos present tetraspannins CD9 and 
CD63 on their surface and, for both humans and porcines, 
are enriched in mRNAs of pluripotency genes such as 
OCT4 and NANOG. The hypothesis that these EVs may 
favour the embryo implantation process is supported by 
experimental evidence showing that dye-labelled human 
embryo-derived EVs can be taken up by in-vitro-cultured 

human primary endometrial epithelial and stromal cells 
[7]. Similarly, in sheep, in-vivo intrauterine instillation of 
labelled conceptus-derived EVs lead to their uptake in 
the luminal epithelium [31]. There is also evidence sup-
porting the idea that preimplantation embryo-derived EVs 
can modulate the local endometrial immune system.

EVs and HLA-G

We have recently demonstrated that HLA-G, reported 
to be present in human preimplantation embryo 
secretome [32,33], was indeed associated with embryo-
derived EVs [7] (Fig. 1). HLA-G can modulate the 
activity not only of decidual NK cells but also of mac-
rophages, T cells and B cells. HLA-G is a well-established 
inhibitory ligand of NK cells, acting via KIR or other 
receptors [19,34]. Upon interaction with KIR2DL4, 
HLA-G induces the secretion of cytokines and growth 
factors characteristic of decidual NK cells and required 
for successful vascular remodelling and pregnancy main-
tenance [35]. The cross-talk between HLA-G-expressing 
trophoblasts and myeloid cells in the decidua might 
favour the generation of tolerogenic DCs, including 
decidual DC-10. Decidual DC-10 express HLA-G and 
can interact with either decidual NK cells or macrophages 
via ILT2 and promote their proangiogenic effects [36,37]. 
Decidual macrophages have been found to produce 
proinflammatory cytokines in response to HLA-G bind-
ing to ILT2. A fraction of CD4+ and CD8+ T cells also 
express surface ILT2, which suppresses T cell prolifera-
tion upon interacting with HLA-G [35]. A similar inhibi-
tory effect can be obtained consequently to the acquisition 
of HLA-G, possibly through trogocytosis by activated 
CD4+ T cells. HLA-G molecules have been detected by 
our group [7] in EVs isolated from media conditioned 
by IVF day 3 (D3) and day 5 (D5) human embryos, 
but not in EV-depleted spent culture media from the 
same samples. HLA-G-mediated immune suppression 
by intercellular transfer mechanisms such as trogocytosis 
or EVs has gained considerable attention in recent years 
[38], suggesting that the effects of HLA-G-mediated 

Table 1. Size of embryo-derived extracellular vesicles (EVs) among different species

Reference Species EVs size (average ±SD) EVs size range (nm)

Mellisho et al. [26] *Bovine IVF-CB 107.3 ± 12.9 nm (days 7–9) 30–385
IVF-NCB 122.0 ± 28.7 nm (days 7–9)
PA-CB 107.0 ± 13.3 nm (days 7–9)
PA-NCB 104.5 ± 18.4 nm (days 7–9)

Kim et al. [28] Mouse 87.1 ± 5.8 nm (outgrowth embryo) 20–225
Saadeldin et al. [27] Porcine <40 nm in early-stage 

embryos
<120 nm in late-stage 

embryos
30–120

Giacomini et al. [7] Human 80.4 ± 2.16 nm (days 1–3) 77.0 ± 3.16 nm (days 3–5) 50–200

*Bovine embryos were produced by in-vitro fertilization (IVF) or parthenogenetic activation (PA), competent blastocysts (CB); non-competent 
blastocysts (NCB). SD = standard deviation.
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maternal–fetal tolerance may be favoured by HLA-G-
bearing EVs released by embryos.

EVs and progesterone-induced blocking factor

Embryo-derived EVs have been also detected at the 
embryo–maternal interface in mouse implantation sites 
[23]. Pallinger and collaborators demonstrated that these 
EVs can transport progesterone-induced blocking factor 
(PIBF) [39]. The PIBF full-length form has been suggested 
to be able to modulate the invasiveness of both the 
trophoblast and malignant tumours [40,41] while the 
shorter form seems to act mainly by regulating NK cell 
activity. During normal pregnancy, decidual NK cells exert 

a low cytotoxic activity despite the abundant presence of 
cytotoxic molecules, such as perforin, in their cytoplasmic 
granules [23]. Interestingly, PIBF is thought to control 
this cytolytic effect by inhibiting degranulation and per-
forin liberation from NK cells [42]. Although this effect 
was observed in peripheral blood NK cells, it is also 
assumed to act locally. The identification of PIBF in 
embryo-derived EVs through immuno-electron microscopy 
supports the hypothesis that its function may be carried 
out via EV signalling.

According to Pallinger and collaborators, mouse embryo-
derived PIBF-carrying EVs can adhere to the surface of 
both CD4+ and CD8+ peripheral T cells inducing IL-10 

Fig. 1. Cargos of extracellular vesicles released by the preimplantation embryo and by trophoblasts with reported effects on the local maternal 
immune cells. PIBF = progesterone-induced blocking factor; ALB = albumin; ULBP1-5 = UL-16 binding proteins 1-5; PLAP = placental alkaline 
phosphatase; PD-L1 = programmed death-ligand 1; MIC-A/B = major histocompatibility complex (MHC) class I-related protein; PAI-1 =  
plasminogen activator inhibitor-1; hCG = human chorionic gonadotrophin; CRH = corticotrophin-releasing hormone; HPL = human placental 
lactogen; FN1 = fibronectin-1.
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production. The abrogation of this effect by pretreatment 
of the EVs with an anti-PIBF antibody confirms the exist-
ence of a communication between the embryo and the 
maternal immune system via EVs [39]. Large vesicles 
rather than exosomes seemed to mediate this action (Fig. 
1).

EVs and miRNAs

The porcine embryo-derived EV cargo also contains a 
variety of miRNA species with different targets on both 
epithelial and stromal cells. The target genes of these 
miRNAs are thought to mediate cellular activities such 
as adhesion and migration, suggesting that embryos 
could potentially modify the endometrial function [43]. 
miRNAs have also been identified in culture media of 
human blastocysts and were detected in biopsied tro-
phectoderm cells, suggesting that they are released from 
blastocysts [44,45]. Although proof that these miRNAs 
derive from EVs is still lacking, it may be presumed 
that these embryo-derived miRNAs could be secreted 
via EVs. Interestingly in this regard, EVs isolated from 
human co-culture supernatant of endometrial epithelial 
cells and cryopreserved D5 blastocysts revealed significant 
alterations in miRNA expression in relation to the age 
of the blastocyst donors [46]. Eighteen EV-bound miR-
NAs displayed altered levels in presence of blastocysts 
from advanced maternal-age subjects. Among these, 
microRNA-155 (miR-155) plays a role in mediating an 
appropriate inflammatory response within the endome-
trial environment. Primary miR-155 and miR-155-5p 
expression is greatly enhanced by antigen receptor 
stimulation of T and B cells [47,48] or by Toll-like 
receptor (TLR) agonist stimulation of DC and mac-
rophages [49–54]. miR-155 is also critical to Treg cell 
expansion and differentiation [55,56]. As EVs were 
analysed in a spent media of a co-culture, it is not 
possible to determine if the miRNA-155-carrying EVs 
derived from the embryo or from the endometrial cells, 
but these observations could suggest the involvement 
of the immune system in early embryo–maternal com-
munication through EVs.

Trophoblast-derived extracellular vesicles: 
characterization and roles at the maternal–fetal 
interface

Shedding of trophoblast-derived microparticles into the 
maternal circulation is a well-known phenomenon, first 
described in 1893. It is therefore not surprising that several 
studies focused on the characterization of trophoblast-
derived EVs and their effect on target cells, as well as 
on their change in number and composition in different 
pathological conditions (Fig. 1).

The placenta is composed of cytotrophoblasts, multi-
nucleated syncytiotrophoblasts (ST) and the uterine artery-
invading extravillous cytotrophoblasts (EVT). Extracellular 
vescicles are mainly secreted by ST and EVT which is 
in direct contact with the maternal circulation.

Several proteomic studies have investigated the composi-
tion of placenta-derived exosomes and MVs. In a meta-
analysis published in 2017, Familari et al. [57] summarizing 
the results of six different studies, showed that only three 
proteins were consistently found in all studies, namely 
albumin, fibronectin-1 (FN1) and plasminogen activator 
inhibitor-1 (PAI-1). The variability of the results obtained 
can be ascribed to differences in isolation techniques, pla-
cental age and to the interindividual genetic difference. 
Of these, the gestational age of the placenta may have 
the greatest impact, considering that the number of secreted 
EVs, as well as the number of different proteins contained, 
increased with gestational age [58]. A recent study has 
analysed the protein content of both exosomes and MVs 
from first-trimester human placenta, showing that most 
of the proteins are shared between different EV types, 
with remarkable exceptions in proteins involved in cellular 
proliferation [59]. Moreover, EVs seem to express ‘eat 
me’ signals such as annexin V and calreticulin, which 
enable them to be taken up by target cells (Fig. 1).

Several types of nucleic acids have also been identi-
fied in EVs. Deep sequencing analysis revealed that most 
RNAs are fewer than 500 nucleotides [60–62], the major-
ity being miRNAs and then mRNAs. Corticotrophin-
releasing hormone (CRH), hCG, placental alkaline 
phosphatase (PLAP) and human placental lactogen (HPL) 
mRNAs have been identified in trophoblast-derived EVs, 
but their functionality in vivo has yet to be confirmed 
[57,63,64].

Trophoblast MVs and maternal immune system

Placental microvesicles seem to have a more proinflam-
matory effect, stimulating the release of cytokines such 
as tumour necrosis factor (TNF)-α, IL-18, IL-12 and IFN-γ 
from circulating leucocytes [65], as well as the activation 
of circulating monocytes [66]. Moreover, in presence of 
activated neutrophils, trophoblast-derived MVs stimulate 
the production of neutrophil extracellular traps (NETs). 
There are, however, some studies showing that placental 
MVs may have an immunomodulatory rather than a 
proinflammatory effect. On B cells and monocytes, a 
down-regulatory effect of MVs on IFN-inducible protein 
10 (IP-10) expression would contribute to the skewing 
of the immune system towards a T helper type 2 (Th2) 
phenotype [67]. Another line of research has focused on 
the role syncytin-1 in MVs. Syncytin-1 and -2 are endog-
enous retroviral proteins essential for the trophoblast 
cell-to-cell fusion process enabling placentation. Syncytin-1 
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has also been found on MVs, and is thought to favour 
the fusion of the MV membrane with the target cell. In 
addition, trophoblast-derived MVs containing syncytin-1 
were shown to activate peripheral blood mononuclear cells 
(PBMC) while dampening their response to lipopolysac-
charides (LPS) [68].

Trophoblast exosomes and the maternal immune 
system

Placental exosomes are characterized in general by an 
immune-suppressive action. While absent on the ST cell 
surface, FasL and TNF-related apoptosis-inducing ligand 
(TRAIL) were found in the endosomal compartment of 
ST and exclusively secreted in exosomes, mediating the 
apoptosis of T cells at the level of the placental barrier 
and offering local immunotolerance [69,70]. Moreover, 
placental exosomes express programmed death ligand 1 
(PD-L1), as well as other members of the B7 family which 
mediate T cell suppression through alterations in the CD3-
zeta and Janus kinase 3 (JAK-3) pathways [71]. Interestingly, 
while syncytin-1-bearing MVs have been shown to exert 
proinflammatory effects, syncytin-1-bearing exosomes can 
suppress the production of TNF-α, IFN-γ and C-X-C motif 
chemokine (CXCL)-10 by PBMC, presumably mediating 
the Th1–Th2 cytokine shift [72]. Finally, the NKG2D 
receptor expression on NK, CD8 and gamma delta cells 
was shown to be down-regulated by treatment with vesicles 
containing MHC class I-related protein (MIC-A MIC-B) 
and UL-16 binding proteins (ULBP1-5), resulting in a 
decreased activity of the NK cell population [73].

Exosomes are also able to modulate gene transcrip-
tion in target cells through C19MC miRNAs. miR-512-3p 
and miR-517-3p, secreted by trophoblast cells in 
exosomes, transfer viral resistance to other non-troph-
oblastic cells in a paracrine manner. When internalized 
by T and NK cells, miR-517a-3p is able to down-regulate 
PRKG1 gene and consequently inhibits their activation 
and proliferation via the nitric oxide/cyclic guanosine 
monophosphate (cGMP) signalling pathway [74]. 
Another miRNA, miR-141, when present in EVs, 
supresses T cell proliferation in vitro, possibly further 
contributing to the mechanisms of maternal tolerance 
[75].

In contrast to these anti-inflammatory effects, in the 
first phases of pregnancy trophoblast exosomes also seem 
to play an active role in promoting monocyte migration 
and macrophage activation in the decidua, creating a sup-
portive environment for placentation. This effect is thought 
to be mainly mediated by fibronectin present in exosomes 
being able to increase the release of proinflammatory 
cytokines such as IL-1β, IL-6, serpin-E1, granulocyte–
monocyte colony-stimulating factor (GM-CSF) and TNF-α 
[76].

Effects of placental EVs from pre-eclamptic 
pregnancies on the maternal immune system

The involvement of EVs in the aetiology of pre-eclamptic 
pregnancies has been supposed based on both qualita-
tive as well as quantitative molecular differences in 
placental EVs observed in pre-eclampsia [77]. Compared 
to normal first-term placentae, placental EVs from pre-
eclamptic women tend to exacerbate the maternal 
immune response to LPS, which is normally reduced 
during gestation [78]. A possible explanation for these 
findings might be the reduction of both syncytin-1 and 
-2 proteins in MVs that, inter alia, take part in damp-
ening PBMC secretion of IL-1β, TNF-α, monocyte che-
moattractant protein 1 and IL-6 [68]. This might be a 
contributory factor to the exaggerated inflammatory 
milieu and the poor placentation that histologically 
characterizes the disease [79,80].

Early pregnancy is associated with infiltration of the 
decidua by N2-like neutrophils characterized by immu-
nosuppressive and pro-angiogenetic capabilities [81]. 
Neutrophil contribution to the aetiology of pre-eclampsia 
and its complications is clear, and trophoblast EVs seem 
to be involved in this phenomenon by activating classical 
N1-like neutrophils. Indeed, in pre-eclampsia, placental 
EVs induce the increase of superoxide production by 
neutrophils and trigger the production of NETs with rela-
tive prothrombotic effects, which are hallmarks of pre-
eclampsia [82,83]. Endoglin-containing EVs are also 
increased in pre-eclampsia [84]. It cannot be excluded 
that these EVs may be responsible, at least in part, of 
the impaired Treg induction within the decidua, working 
as inhibitors of transforming growth factor (TGF)-β [85], 
with the consequently unsuccessful Th1–Th2 shifting. 
Finally, galectin-13, a key regulator of immune homeostasis 
by inducing T cell death and inflammation, has been 
shown to be increased in the cargo of EVs from pre-
eclamptic pregnancies [77].

Conclusions

Immune system components are major regulators of the 
success of embryo implantation and pregnancy establish-
ment. Some of these regulatory functions on the immune 
cells may be carried out through the local release of small 
EVs loaded with bioactive molecules that act in a par-
acrine manner in adjacent cells. This overview has sum-
marized the evidence provided so far on the potential 
effects exerted by EVs of embryonic origin on the local 
immune components. However, the precise function of 
EVs in pregnancy is not fully understood. So far, whether 
EVs will serve as biomarkers for diagnosing or assessing 
some dysfunctions of pregnancy or to encapsulate small 
molecule drugs as therapeutics remains completely unclear.
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